首页 | 本学科首页   官方微博 | 高级检索  
     

基于Apriori算法的加权关联规则的挖掘
引用本文:张秋余,曹华. 基于Apriori算法的加权关联规则的挖掘[J]. 兰州理工大学学报, 2007, 33(6): 69-71
作者姓名:张秋余  曹华
作者单位:兰州理工大学,计算机与通信学院,甘肃,兰州,730050;兰州理工大学,计算机与通信学院,甘肃,兰州,730050
基金项目:国家科技支撑计划资助项目(2006BAF01A21)
摘    要:关联规则挖掘主要用来发现数据库中存在的频繁项集.利用权值标识项目的重要程度,提出一种新的关联规则——加权关联规则的挖掘.由于项目权值的引入,Apriori性质不再成立,频繁项集的子集不再一定是频繁的.为此,提出k-最小支持数的概念,对原有Apriori算法进行改进.该算法能够挖掘出现频率小但是带来更大利润的项目,使得挖掘出的关联规则更加满足决策者的需求,也更加符合实际需要.

关 键 词:数据挖掘  加权关联规则  加权支持度
文章编号:1673-5196(2007)06-0069-03
收稿时间:2007-05-24
修稿时间:2007-05-24

Mining of weighted association rules based on algorithm Apriori
ZHANG Qiu-yu,CAO Hua. Mining of weighted association rules based on algorithm Apriori[J]. Journal of Lanzhou University of Technology, 2007, 33(6): 69-71
Authors:ZHANG Qiu-yu  CAO Hua
Abstract:Association rules mining is mainly used to find frequent item sets in database. By taking weight value as a mark of the importance of individual item, mining with a new association rule-weighted association rule was proposed. Due to the introduction of this items weight, the truth of Apriori would not hold further. The subset of frequent item set would not also be exactly frequent. Thus, a concept of k-support minimum value of item sets was set forth, and an algorithm to discover weighted association rules was proposed. Using this approach, the items with low frequency and high profit could be mined, and the association rules were mined more to meet the needs of decision makers, and also more meet the practical needs.
Keywords:data mining  weighted association rule  weighted support rate
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号