首页 | 本学科首页   官方微博 | 高级检索  
     

基于动态长短期记忆网络的设备性能退化预测方法
作者姓名:卫炳坤  王庆锋  刘家赫  张田雨
作者单位:1. 北京化工大学 机电工程学院, 北京 100029;2. 北京化工大学 高端机械装备健康监控及自愈化北京市重点实验室, 北京 100029;3. 中国航天标准化与产品保证研究院, 北京 100166
基金项目:中国石化科技部项目(320059/319022-1)
摘    要:针对目前基于数据驱动的旋转机械退化状态预测中时序列信息考虑不充分、寿命标签制定不合理、退化模型累计误差大等问题,提出一种融合趋势滤波、模糊信息粒化、动态长短期记忆网络(LSTM)的旋转机械退化趋势与退化区间预测方法。以振动信号为例,首先提取表达设备退化信息的特征指标,然后通过趋势滤波与模糊信息粒化提取主要退化趋势与模糊退化边界,其次利用动态LSTM进行综合性能退化预测;最后,利用网络公开的轴承训练数据集验证了本文方法的可行性与有效性。

关 键 词:长短期记忆网络  性能退化预测  趋势滤波  模糊信息粒化  
收稿时间:2020-04-04
点击此处可从《北京化工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京化工大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号