首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力网络特征的社区发现算法
引用本文:王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法[J]. 山东大学学报(理学版), 2021, 56(9): 1-12,20. DOI: 10.6040/j.issn.1671-9352.4.2021.174
作者姓名:王静红  梁丽娜  李昊康  周易
作者单位:河北师范大学计算机与网络空间安全学院,河北 石家庄 050024;河北省供应链大数据分析与数据安全工程研究中心,河北 石家庄050024;河北师范大学计算机与网络空间安全学院,河北 石家庄 050024;上海海关科技处,上海200002
基金项目:河北省自然科学基金资助项目(F2019205303);河北省引进留学人员资助项目(C20200340)
摘    要:现实世界中许多网络都是根据社区结构紧密组织起来的,发现社区对于了解复杂网络的结构及其关系有很大的帮助,文中提出了一种基于注意力网络特征的社区发现(community discovery algorithm based on attention network features,CANF)算法,利用标记节点频率和反示例节...

关 键 词:复杂网络  注意力网络特征  社区发现  网络预处理  社区博弈归并
收稿时间:2021-06-02

Community discovery algorithm based on attention network feature
Jing-hong WANG,Li-na LIANG,Hao-kang LI,Yi ZHOU. Community discovery algorithm based on attention network feature[J]. Journal of Shandong University, 2021, 56(9): 1-12,20. DOI: 10.6040/j.issn.1671-9352.4.2021.174
Authors:Jing-hong WANG  Li-na LIANG  Hao-kang LI  Yi ZHOU
Affiliation:1. School of Computer and Cyber Security, Hebei Normal University, Shijiazhuang 050024, Hebei, China
2. Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics & Data Security, Shijiazhuang 050024, Hebei, China
3. Science & Technology Division, Shanghai Customs District P R China, Shanghai 200002, China
Abstract:In the real world, many networks are closely organized according to the community structure. It has been found that the community is of great help in understanding the structure and relationship of complex networks. This paper proposes a community discovery algorithm based on attention network features (CANF algorithm). It uses the label node frequency and the inverse example node frequency to measure the initial network label characteristics, and introduces the attention mechanism, and updates each neighbor node of the example node. Combined the initial weight with the assigned weight, the network features of the initial measure can obtain more detailed information related to the target. In this paper, complex network preprocessing and community game merge are carried out through distributed attention network features. The experimental results show that the accuracy, modularity and running time of the community discovery algorithm based on attention network features are better than other community discovery algorithms.
Keywords:complex network  attention network feature  community discovery  network preprocessing  community game merge  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号