首页 | 本学科首页   官方微博 | 高级检索  
     

基于DRNN神经网络的挖掘机伺服系统参数辨识
引用本文:黎波,严骏,郭刚,钱海波,张梅军. 基于DRNN神经网络的挖掘机伺服系统参数辨识[J]. 解放军理工大学学报(自然科学版), 2013, 14(1): 75-78. DOI: -
作者姓名:黎波  严骏  郭刚  钱海波  张梅军
作者单位:解放军理工大学 野战工程学院,江苏 南京 210007
基金项目:国家自然科学基金资助项目
摘    要:为有效分析挖掘机电液伺服系统,提高依据模型设计控制器的精度,建立了系统状态空间模型。针对模型中的不确定参数,提出了基于对角回归神经网络的系统辨识策略。通过神经网络在线学习得到系统Jacobian信息,将实测信息代入含Jacobian信息与待辨识参数的线性方程,利用最小二乘法求得未知参数。实验表明,辨识模型能从初始阶段的微小误差逐渐地逼近实际系统,所提出的方法能有效辨识系统参数。

关 键 词:挖掘机  电液伺服系统  对角回归神经网络  Jacobian信息  参数辨识
收稿时间:2011-04-25
修稿时间:2011-04-25

Parameter identification of servo system for excavator based on DRNN
LI Bo,YAN Jun,GUO Gang,QIAN Haibo and ZHANG Meijun. Parameter identification of servo system for excavator based on DRNN[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2013, 14(1): 75-78. DOI: -
Authors:LI Bo  YAN Jun  GUO Gang  QIAN Haibo  ZHANG Meijun
Affiliation:College of Field Engineering, PLA Univ. of Sci. & Tech., Nanjing 210007, China
Abstract:To analyze the servo system of the excavator effectively and design the controller precisely, the state space model was built. According to the characteristics of the parameter uncertainties, an identification method based on diagonal recurrent neural network (DRNN) was developed. The Jacobian information was achieved by on line learning through neural networks, and least square method was proposed to identify the unknown parameters by using the achieved information. The comparison experiment demonstrated that the identified model can approximate actual system gradually,and that the proposed method in this paper can meet the need for identifying the unknown parameters.
Keywords:excavator  electro hydraulic servo system  DRNN  Jacobian information  parameter identification
本文献已被 万方数据 等数据库收录!
点击此处可从《解放军理工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《解放军理工大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号