首页 | 本学科首页   官方微博 | 高级检索  
     

基于进化强度的蚁群算法过程性能评价
引用本文:曹建军,刁兴春,李凯齐,邵衍振. 基于进化强度的蚁群算法过程性能评价[J]. 解放军理工大学学报(自然科学版), 2013, 14(1): 37-41. DOI: -
作者姓名:曹建军  刁兴春  李凯齐  邵衍振
作者单位:1. 总参第63研究所,江苏 南京 210007; 2. 解放军理工大学 指挥信息系统学院, 江苏 南京 210007;3.解放军71435部队, 山东 淄博 255000
基金项目:中国博士后科学基金特别资助项目,中国博士后科学基金资助项目,江苏省博士后科研资助计划项目
摘    要:为了评价蚁群算法的过程性能,提出了一种基于进化强度的蚁群算法性能评价方法。以子集问题为例,引入谷元距离度量解的差异程度,并定义了迭代的相对进化幅度。将一次迭代的相对进化幅度与解的相对差异程度之比定义为进化强度,并据此将迭代区分为进化代与停滞代。通过多次运行算法并计算进化强度的平均值得到蚁群算法的进化强度趋势图,对比进化强度的趋势图进行蚁群算法过程性能评价。以4种求解子集的典型蚁群算法为例,通过标准测试实例验证了评价方法的有效性与合理性。

关 键 词:蚁群算法  过程性能  进化强度  趋势图
收稿时间:2012-02-15
修稿时间:2012-02-15

Process performance assessment for ant colony optimization using evolving strength
CAO Jianjun,DIAO Xingchun,LI Kaiqi and SHAO Yanzhen. Process performance assessment for ant colony optimization using evolving strength[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2013, 14(1): 37-41. DOI: -
Authors:CAO Jianjun  DIAO Xingchun  LI Kaiqi  SHAO Yanzhen
Affiliation:1.The 63rd Research Institute of PLA General Staff Headquarters, Nanjing 210007, China;2. College of Command Information System,PLA Univ. of Sci. & Tech., Nanjing 210007, China;3.Unit No.71435 of PLA, Zibo 255000, China
Abstract:To assess the process performance of ant colony optimization, an evolution method based on evolving strength for ant colony optimization was proposed. By taking the subset problem for example, Tanimoto distance was introduced to measure the difference degree between the two feasible solutions, and the relative evolving range of a generation was defined. The evolving strength of a generation was defined as the ratio of its relative evolving range to the relative difference degree. According to the evolving strength, the generations were classified into two classes, that is, the evolving generation and the stagnating generation. The evolving strength trend charts of the ant colony optimization were obtained by averaging the evolving strength values that come from executing the algorithm multiple times, and the performances of ant colony optimizations were evaluated through their trend charts. Using standard testing cases, the effectiveness and rationality of the proposed method were tested using four typical ant colony optimizations for subset problems.
Keywords:ant colony optimization  process performance  evolving strength  trend chart
本文献已被 万方数据 等数据库收录!
点击此处可从《解放军理工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《解放军理工大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号