首页 | 本学科首页   官方微博 | 高级检索  
     

基于正弦注意力表征网络的环境声音识别
引用本文:彭宁,陈爱斌,周国雄,陈文洁,刘晶. 基于正弦注意力表征网络的环境声音识别[J]. 应用科学学报, 2021, 39(4): 641-649. DOI: 10.3969/j.issn.0255-8297.2021.04.011
作者姓名:彭宁  陈爱斌  周国雄  陈文洁  刘晶
作者单位:1. 中南林业科技大学 人工智能应用研究所, 湖南 长沙 410004;2. 中南林业科技大学 智慧物流技术湖南省重点实验室, 湖南 长沙 410004;3. 中南林业科技大学 计算机与信息工程学院, 湖南 长沙 410004
基金项目:中南林业科技大学研究生科技创新基金(No.CX20192014)资助
摘    要:
将正弦注意力表征网络引入环境声音识别,首先提取梅尔频率倒谱系数(Mel-frequency cepstral coefficient,MFCC)作为音频识别特征,使用门控循环单元提取MFCC每一帧的特征,根据正弦函数激活每一帧音频得分,并依照每一帧的音频得分为音频重新分配权重,从而将注意力集中在音频重点区域.最后结合全...

关 键 词:环境声音识别  注意力机制  梅尔频率倒谱系数  门控循环单元  正弦注意力表征网络
收稿时间:2020-08-23

Environmental Sound Recognition Based on Attention Sinusoidal Representation Network
PENG Ning,CHEN Aibin,ZHOU Guoxiong,CHEN Wenjie,LIU Jing. Environmental Sound Recognition Based on Attention Sinusoidal Representation Network[J]. Journal of Applied Sciences, 2021, 39(4): 641-649. DOI: 10.3969/j.issn.0255-8297.2021.04.011
Authors:PENG Ning  CHEN Aibin  ZHOU Guoxiong  CHEN Wenjie  LIU Jing
Affiliation:1. Institute of Artificial Intelligence Application, Central South University of Forestry and Technology, Changsha 410004, Hunan, China;2. Hunan Key Laboratory of Intelligent Logistics Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China;3. College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
Abstract:
In this paper, we propose an attention sinusoidal representation network (A-SIREN). Firstly, Mel -frequency cepstral coefficient (MFCC) as an audio recognition feature is extracted from a dataset. Then, feature extraction is performed on each frame of the MFCC by using a neural network named gated recurrent unit (GRU). And audio score is calculated for each frame by using sine function and the audio is re-weighted according to the audio score of each frame. Finally, the categories of environmental sound are discriminated by using the full connection layer in combination with the Softmax classifier. In the experiments of this paper, we validated the designed model in an open-source dataset Urban Sound 8K and compared the performance of the designed model with that of other models. Experimental results show that the A-SIREN works best on the Urban Sound 8K dataset with recognition rate as high as 93.5%.
Keywords:environment sound recognition  attention mechanism  Mel-frequency cepstral coefficient (MFCC)  gated recurrent unit (GRU)  attention sinusoidal representation network (A-SIREN)  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号