首页 | 本学科首页   官方微博 | 高级检索  
     

基于MLP&ST模型的空气质量预测
引用本文:刘之瑜,张淑芬,刘洋,罗长银,李敏. 基于MLP&ST模型的空气质量预测[J]. 应用科学学报, 2021, 39(2): 302-315. DOI: 10.3969/j.issn.0255-8297.2021.02.012
作者姓名:刘之瑜  张淑芬  刘洋  罗长银  李敏
作者单位:华东理工大学 信息科学与工程学院, 上海 200237
基金项目:唐山市重点研发计划项目(No.18120203A)资助
摘    要:针对目前大多数模型均为对已监测区域的空气质量进行预测,而少有对未监测区域进行预测的问题,综合考虑气象因素、空间相关性和时间依赖性对空气质量的影响,提出了一种联合训练模型MLP&ST (MLP&spatial-temporal),模拟预测北京市未监测区域未来时刻的空气质量指数(air quality index,AQI)。通过实验结果对比确定最佳历史时间步长P值为29;然后将模型与其他空气质量预测模型进行对比。实验结果表明,MLP&ST模型在3种评价指标下(RMSE,MAE,MAPE)皆优于其他对比模型,验证了所提出模型具有良好的预测效果。

关 键 词:空气质量预测  MLP&ST  空气质量指数  
收稿时间:2020-08-28

Data Augmentation Method Based on Image Gradient
LIU Zhiyu,ZHANG Shufen,LIU Yang,LUO Changyin,LI Min. Data Augmentation Method Based on Image Gradient[J]. Journal of Applied Sciences, 2021, 39(2): 302-315. DOI: 10.3969/j.issn.0255-8297.2021.02.012
Authors:LIU Zhiyu  ZHANG Shufen  LIU Yang  LUO Changyin  LI Min
Affiliation:School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract:As used in classification of image recognition, convolutional neural network requires large-scale image data set for training. Due to the limitation of the number of target images to be collected and the conditions of image acquisition equipment, it is difficult to obtain enough image samples by conventional methods because of time-consuming, laborconsuming and money-consuming. In order to solve the insufficiency of image samples, a variety of sample enlargement methods have been proposed. This paper introduces the research background and significance of data augmentation. For the purpose of improving the accuracy of image recognition of convolutional neural network, a data augmentation method based on image gradient is proposed. The image gradient is selected to increase image sample and enlarge image data set by precise clipping method, and the convolutional neural network is trained with the expanded data set. By using Tensorflow deep learning framework and VGG16 network model, and selecting some data sets of PlantVillage, the training set data can be expanded to 6 times of the original. The training set before and after the expansion is trained and compared. Experimental results show that the accuracy rate of the model trained by the training set after data augmentation is increased by 4.18%.
Keywords:data augmentation  image gradient  convolutional neural network  TensorFlow deep learning framework  PlantVillage dataset  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号