首页 | 本学科首页   官方微博 | 高级检索  
     

基于中心点和双重注意力机制的无人机高分辨率图像小目标检测算法
引用本文:王胜科,任鹏飞,吕昕,庄新发. 基于中心点和双重注意力机制的无人机高分辨率图像小目标检测算法[J]. 应用科学学报, 2021, 39(4): 650-659. DOI: 10.3969/j.issn.0255-8297.2021.04.012
作者姓名:王胜科  任鹏飞  吕昕  庄新发
作者单位:中国海洋大学 信息科学与工程学院, 山东 青岛 266100
基金项目:国家自然科学基金(No.41927805,No.U17062189,No.61602229,No.41606198,No.61501417,No.41706010);国家重点研发计划基金(No.2018YFB1701802);装备预研教育部联合基金(No.6141A020337);山东省自然科学基金(No.ZR2016FM13,No.ZR2016FB02)资助
摘    要:
无人机拍摄的图像具有分辨率高、视野大以及目标小的特点,而现有的目标检测方法对小目标特征的提取能力不足.为此,首先采用以中心点表示目标的检测网络CenterNet,引入可变形双重注意力机制,以提高对小目标的特征表达能力;然后针对原始非极大值抑制难以处理嵌套型冗余框的问题,在冗余检测剔除过程中提出了广义非极大值抑制方法;最...

关 键 词:无人机  高分辨率  小目标检测  中心点检测  注意力机制
收稿时间:2020-08-25

Small Target Detection Algorithm of UAV High Resolution Image Based on Center Point and Dual Attention Mechanism
WANG Shengke,REN Pengfei,Lü Xin,ZHUANG Xinfa. Small Target Detection Algorithm of UAV High Resolution Image Based on Center Point and Dual Attention Mechanism[J]. Journal of Applied Sciences, 2021, 39(4): 650-659. DOI: 10.3969/j.issn.0255-8297.2021.04.012
Authors:WANG Shengke  REN Pengfei  Lü Xin  ZHUANG Xinfa
Affiliation:College of Information Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China
Abstract:
Unmanned aerial vehicle (UAV) images have characteristics of high resolution, large field of vision and small target. However, existing object detection methods are generally insufficient in extracting the features of these small targets. Aiming at this problem, a small target detection algorithm is proposed in this paper. First, in order to improve the ability of feature expression for small targets, CenterNet, a detection network which uses center points to represent small targets, is adopted, and a deformable dual attention mechanism is induced. Then on this basis, for the problem of deficiency of original nonmaximum suppression (NMS) in dealing with nested redundant frames, we propose to use a generalized non-maximum suppression (G-NMS) in the process of redundancy detection elimination. Finally, LegoNet convolution unit is introduced to reduce convolution parameters and achieve balance between precision and velocity. The main validation data sets used in this paper are Visdrone 2019 and UAV_ OUC. Images in UAV_OUC have higher resolution than those in VisDrone2019. Compared with CenterNet, the detection accuracies of UAV_OUC and VisDrone2019 are improved by about 10% and 2% respectively.
Keywords:unmanned aerial vehicle (UAV)  high resolution  small target detection  center point detection  attention mechanism  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号