首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊神经网络的自适应滤波方法仿真研究
引用本文:马野,王孝通,戴耀. 基于模糊神经网络的自适应滤波方法仿真研究[J]. 系统仿真学报, 2005, 17(10): 2447-2449
作者姓名:马野  王孝通  戴耀
作者单位:大连舰艇学院自动化系,大连116018
摘    要:提出了一种模糊自适应卡尔曼滤波算法。该算法基于模糊规则,根据新息相关性,自适应调整测量噪声方差R,有效的解决了噪声的统计特性与实际不符时,滤波器发散的现象。同时,利用Elman网络作为误差估计器,补偿模糊自适应卡尔曼滤波器的估计误差。仿真结果表明,两种方法结合,可以有效地防止滤波器发散,缩小实际的滤波误差,提高滤波精度,实现滤波器参数的在线改进。

关 键 词:模糊卡尔曼滤波 自适应滤波 神经网络 误差估计
文章编号:1004-731X(2005)10-2447-03
收稿时间:2004-07-23
修稿时间:2005-03-24

Research on Adaptive Filtering Based on Fuzzy Neural Networks
MA Ye,WANG Xiao-tong,DAI Yao. Research on Adaptive Filtering Based on Fuzzy Neural Networks[J]. Journal of System Simulation, 2005, 17(10): 2447-2449
Authors:MA Ye  WANG Xiao-tong  DAI Yao
Abstract:An algorithm of adaptive fuzzy Kalman filtering is presented.According to relativity of innovation,the measurement noise covariance(R) was adjusted adaptively based on the fuzzy rule.The method couldcope with divergence problem caused by the insufficiently knowing of the prior filter statistics.Simultaneity,the Elman network was employed as a compensating error estimator to compensate estimation error of the fuzzy Kalman filter.Simulation result shows that the presented method reduces the error of actual filter,improves the accuracy and can amend filter's parameters on-line.
Keywords:fuzzy Kalman filtering   adaptive filter   Neural Networks   errors estimation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号