首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于自注意力机制的网络流量异常检测方法
作者姓名:
宣萍
房朝辉
丁宏
作者单位:
安徽省产品质量监督检验研究院电子电器所
基金项目:
安徽省重点研究与开发计划科技合作专项(2022k07020011);
摘 要:
网络中异常流量的有效检测对网络安全至关重要.以机器学习方法为主的异常流量检测技术,对流量数据采用特征选择方法进行降维并提取最优特征,但容易忽略数据特征之间的关联性,存在异常流量的检测率低、误报率高等问题.为了提高异常流量检测性能,论文在提取流量数据特征的过程中引入自注意力机制进行相关性学习,并结合深度卷积神经网络提出一种有效的网络流量异常检测模型.实验结果表明:通过引入自注意力机制,论文所提出的检测方法能够提取更准确的流量特征,并使得异常流量检测率高、误报率低.
关 键 词:
异常流量检测
自注意力机制
深度学习
特征选择
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号