首页 | 本学科首页   官方微博 | 高级检索  
     

基于融合分割和LASSO回归的实时车道偏离预警
引用本文:许小伟,陈乾坤,蔡永祥,史延雷,曾佳辉. 基于融合分割和LASSO回归的实时车道偏离预警[J]. 武汉科技大学学报, 2020, 0(1): 50-58
作者姓名:许小伟  陈乾坤  蔡永祥  史延雷  曾佳辉
作者单位:武汉科技大学汽车与交通工程学院,湖北 武汉,430065,武汉科技大学汽车与交通工程学院,湖北 武汉,430065,中国汽车技术研究中心汽车工程研究院,天津,300300,中国汽车技术研究中心汽车工程研究院,天津,300300,武汉科技大学汽车与交通工程学院,湖北 武汉,430065
基金项目:国家自然科学基金资助项目(51975428,51975426);湖北省技术创新专项重大项目(2018AAA060);中国汽车技术研究中心科研项目(18191223).
摘    要:
在有路面污染、标识干扰等复杂高速道路环境下,车道偏离预警系统的鲁棒性和实时性会变差。为此提出一种利用两种算法融合分割和LASSO回归模型进行车道线检测和偏离预警的新方法。首先,分别采用TopHat算法和OTSU算法分割出车道线背景并进行"与"运算融合,据此准确提取出车道信息;其次,分两步检测车道线,第一步基于概率Hough变换进行直线检测,将检测出的车道线位置设为动态ROI区域并进行卡尔曼滤波跟踪处理,第二步是基于LASSO多项式回归模型对车道线再次进行参数估计和拟合,以改善使用最小二乘法时的过拟合问题;最后,根据设置的虚拟车道线和角度模型进行车道偏离预警决策。实验结果表明,所提出的方法在复杂道路环境下的平均正检率为96.07%,检测速率可达到32 ms/帧,即具有良好的鲁棒性和实时性。

关 键 词:车道偏离预警  车道线检测  TopHat算法  OTSU算法  图像融合  LASSO回归  角度模型
收稿时间:2019-08-14

Real-time lane departure warning based on fusion segmentation and LASSO regression
Xu Xiaowei,Chen Qiankun,Cai Yongxiang,Shi Yanlei and Zeng Jiahui. Real-time lane departure warning based on fusion segmentation and LASSO regression[J]. Journal of Wuhan University of Science and Technology, 2020, 0(1): 50-58
Authors:Xu Xiaowei  Chen Qiankun  Cai Yongxiang  Shi Yanlei  Zeng Jiahui
Affiliation:College of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, China,College of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, China,Automotive Engineering Research Institute, China Automotive Technology and Research Center, Tianjin 300300, China,Automotive Engineering Research Institute, China Automotive Technology and Research Center, Tianjin 300300, China and College of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
Abstract:
Robustness and real-time performance of lane departure warning system would deteriorate in the complex highway environment with road surface pollution and traffic sign interference. Therefore a novel method of lane detection and departure warning based on fusion segmentation by two algorithms and LASSO regression model is proposed. Firstly, the lane line background is segmented by using TopHat and OTSU algorithms respectively and then fused by AND operation so that the lane information can be extracted accurately. Secondly, the lane line is detected in two steps. The first step is to use probabilistic Hough transform for straight line detecting. The preliminarily detected lane location is set as the dynamic ROI area which is then tracked by Kalman filter algorithm. The next step is to use LASSO polynomial regression model to estimate and fit the lane line parameters again, so as to solve the problem of over-fitting when using least square method. Finally, the decision of lane departure warning is made based on the virtual lanes and angle model. Experimental results show that the proposed method has an average detection accuracy of 96.07% and an average detection speed of 32 ms/frame in the complex road environment, which can meet the real-time and robust requirements for lane departure warning system.
Keywords:lane departure warning   lane detection   TopHat algorithm   OTSU algorithm   image fusion   LASSO regression   angle model
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉科技大学学报》浏览原始摘要信息
点击此处可从《武汉科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号