首页 | 本学科首页   官方微博 | 高级检索  
     

基于模拟退火算法与隐马尔可夫模型的Web信息抽取
引用本文:邹腊梅,龚向坚,肖芳,马淑萍. 基于模拟退火算法与隐马尔可夫模型的Web信息抽取[J]. 南华大学学报(自然科学版), 2011, 25(1): 70-74
作者姓名:邹腊梅  龚向坚  肖芳  马淑萍
作者单位:1. 南华大学计算机科学与技术学院,湖南衡阳,421001
2. 衡阳技师学院信息技术系,湖南衡阳,421007
摘    要:典型隐马尔可夫模型对初始参数非常敏感,采用随机参数训练隐马尔可夫模型时常陷入局部最优,应用于W eb信息抽取时效果不佳.文中提出基于模拟退火算法与隐马尔可夫模型的W eb信息抽取算法.通过实验比较选择最佳的模拟退火算法参数,结合Baum-W elch算法优化隐马尔可夫模型并应用于W eb信息抽取.实验结果表明新算法在信息抽取的精确率和召回率都有明显的提高.

关 键 词:模拟退火算法  隐马尔可夫模型  Web信息抽取
收稿时间:2010-12-20

Web Information Extraction Based on Simulated Annealing Algorithm and Hidden Markov Model
ZOU La-mei,GONG Xiang-jian,XIAO Fang,MA Shu-ping. Web Information Extraction Based on Simulated Annealing Algorithm and Hidden Markov Model[J]. Journal of Nanhua University(Science and Technology), 2011, 25(1): 70-74
Authors:ZOU La-mei  GONG Xiang-jian  XIAO Fang  MA Shu-ping
Affiliation:ZOU La-mei1,GONG Xiang-jian1,XIAO Fang2,MA Shu-ping1(1.School of Computer Science and Technology,University of South China,Hengyang,Hunan 421001,China,2.Department of Information Technology,Hengyang Technician College,Hunan 421007,China)
Abstract:Typical HMM is sensitive to the initial model parameters and often leads to sub-optimal when training it with random parameters.It is ineffective when extracting Web information with typical HMM.The artical proposes web information extraction algorithm based on SA and HMM.The algorithm chooses the best SA parameters by experiment and optimizes HMM combining Baum-Welch during the course of extracting Web information.Experimental results show that the new algorithm significantly improves the performance in pr...
Keywords:simulated annealing algorithm  hidden Markov model  Web information extraction  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《南华大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《南华大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号