首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群和人工蜂群算法的混合优化算法
引用本文:王志刚. 基于粒子群和人工蜂群算法的混合优化算法[J]. 科学技术与工程, 2012, 12(20): 4921-4925,4934
作者姓名:王志刚
作者单位:南京师范大学泰州学院数学科学与应用学院,泰州,225300
基金项目:泰州市科技发展计划项目、泰州市社会发展计划项目
摘    要:
提出一种基于粒子群(PSO)和人工蜂群算法(ABC)相结合的新型混合优化算法—PSOABC。该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由人工蜂群算法进化而来,并且在人工蜂群算法中按轮盘赌的方式选择个体进化所需的随机个体。此外,算法采用一种信息分享机制,使两个种群中的个体可以实现协同进化。对4个基准函数进行仿真实验并与ABC进行比较,表明本文提出的算法能有效地改善寻优性能,增强摆脱局部极值的能力。

关 键 词:粒子群算法  人工蜂群算法   混合算法
收稿时间:2012-03-25
修稿时间:2012-04-11

Hybrid Optimization Algorithm based on Particle Swarm Optimization and Artificial Bee Colony Algorithm
wangzhigang. Hybrid Optimization Algorithm based on Particle Swarm Optimization and Artificial Bee Colony Algorithm[J]. Science Technology and Engineering, 2012, 12(20): 4921-4925,4934
Authors:wangzhigang
Affiliation:WANG Zhi-gang (School of Mathematics,Taizhou College,Nanjing Normal University,Taizhou 225300,P.R.China)
Abstract:
A new hybrid global optimization algorithm PSOABC is presented, which is based on the combination of the particle swarm optimization (PSO) and artificial bee colony algorithm (ABC). PSOABC is based on a two population evolution scheme, in which the individuals of one population are evolved by PSO and the individuals of the other population are evolved by ABC. Random individuals in which evolution of individual required are selected by roulette in ABC. The individuals both in PSO and ABC are coevolved by employing an information sharing mechanism. Four benchmark functions are tested, and the performance of the proposed PSOABC algorithm is compared with ABC. Which demonstrate that PSOABC can improve optimizing performance effectively, and it can avoid getting struck at local optima effectively.
Keywords:particle swarm optimization   artificial bee colony algorithm   hybrid algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号