首页 | 本学科首页   官方微博 | 高级检索  
     

基于概率频度的普通话韵律结构预测统计模型
引用本文:郑敏,蔡莲红. 基于概率频度的普通话韵律结构预测统计模型[J]. 清华大学学报(自然科学版), 2006, 46(1): 78-81
作者姓名:郑敏  蔡莲红
作者单位:清华大学,计算机科学与技术系,北京,100084;清华大学,计算机科学与技术系,北京,100084
基金项目:国家科技攻关项目;中国科学院资助项目
摘    要:为进一步提高文语转换系统中韵律结构预测的准确度,提出了一个基于概率频度的统计模型的方法,预测韵律词和韵律短语边界两级韵律结构。该方法提取与韵律词和韵律短语边界有关的语言学特征(词性、语法词、长度和位置等),并进行样本训练计算各个特征的概率频度值,最终分别建立韵律词和韵律短语的统计模型。实验结果表明:统计模型的方法对于韵律词和韵律短语边界预测的正确率分别可达90.6%和84.6%,并与决策树算法和T ransform ation-based learn ing(TBL)转换规则学习算法比较,提高10%以上的正确率。

关 键 词:文字信息处理  韵律词  韵律短语  概率频度  统计模型
文章编号:1000-0054(2006)01-0078-04
修稿时间:2005-01-05

Statistical model based on probability frequency for Mandarin prosodic structure prediction
ZHENG Min,CAI Lianhong. Statistical model based on probability frequency for Mandarin prosodic structure prediction[J]. Journal of Tsinghua University(Science and Technology), 2006, 46(1): 78-81
Authors:ZHENG Min  CAI Lianhong
Abstract:The accuracy of prosody structure prediction in text-to-speech(TTS) conversion systems is improved by a statistical model based on the probability frequency to detect the two-tier prosodic hierarchy,including prosodic words and prosodic phrases.The system fast extracts linguistic features related to the prosodic structure such as part-of-speech,lexical words,length,and position information. Then,the probability frequency for each selected feature is calculated with statistical models designed for the prosodic words and phrases.Tests show that the correct identification rates of prosodic words and phrases are improved to 90.6% and 84.6% using the statistical model.The statistical model gives 10% better performance than the decision tree or Transformation-based learning(TBL) algorithms.
Keywords:word information process  prosodic word  prosodic phrase  probability frequency  statistical model
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号