结合示例空间概念权重的多示例核学习方法? |
| |
作者姓名: | 潘强 张钢 王春茹 |
| |
作者单位: | 珠海城市职业技术学院,中山大学信息科学与技术学院,广东工业大学自动化学院 |
| |
基金项目: | 国家自然科学基金项目(面上项目,重点项目,重大项目) |
| |
摘 要: | 提出了一种考虑包中样本在概念空间中重要度的多示例核学习方法。引入了包中示例对整个样本空间所包含概念的权重向量。通过数量化的手段表示出每个示例从属于每个概念的重要程度。主要步骤如下:a)通过对所有示例进行聚类,得到能够反映多示例包中所含概念的簇;b)借用文本分类中的r-pattern计算得到每个示例对于概念空间中每个概念的权重向量;c)在多示例核中通过余弦相似度结合示例的权重,得到更能反映概念空间特性的多示例概念核。该方法同时考虑了包层次的概念和示例层次的权重,能够有效度量包中示例对于最终包标记的影响,且本身建立在多示例核的基础上,适用于多种多示例学习的场合。在标准数据集和图像数据集上的实验表明,该算法是有效的。
|
关 键 词: | 多示例学习 多示例概念 示例权重 r-Pattern 多示例核 |
收稿时间: | 2012-06-21 |
修稿时间: | 2012-07-13 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《科学技术与工程》浏览原始摘要信息 |
|
点击此处可从《科学技术与工程》下载免费的PDF全文 |
|