摘 要: | ![]() C为Banach空间X的子集,如果对每个x∈X,有y∈C满足||x-y||=lim_z∈C||x-z||,称y为x在C中的最佳逼近元,记为π(x|C).算子π(·|C)称为关于C的最佳逼近算子.本文讨论Orlicz函数空间L_(M)(G,∑,μ),其中G为无原子有限测度空间.对于σ代数∑的σ子格∑’,记L_M(∑’)={x∈L_M:x为∑’可测},由文献[1],L_M(∑’)是L_M中闭凸锥.如果M(u)对较大的u满足△_2条件且其右导数P(u)连续、严格增,由文献[2],π(·|L_M(∑’))有意义.这类特殊的最佳逼近算子称为预报算子,它在Bayes估计理论和预报理论等众多领域中有重要应用,一向为人们所关注.1970年Dykstra给出L~2中关于σ子格的预报算子的刻划,1979年Landers和Rogge将上述结果扩展到L~P(1
|