首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制的GRU神经网络安全态势预测方法
引用本文:何春蓉,朱江. 基于注意力机制的GRU神经网络安全态势预测方法[J]. 系统工程与电子技术, 2021, 43(1): 258-266. DOI: 10.3969/j.issn.1001-506X.2021.01.32
作者姓名:何春蓉  朱江
作者单位:重庆邮电大学通信与信息工程学院, 重庆 400065
基金项目:国家自然科学基金(61271260);国家自然科学基金(61301122);重庆市科委自然科学基金(cstc2015jcyjA40050)
摘    要:传统的网络安全态势预测方法依赖于历史态势值的准确性,并且各种网络安全因素之间存在相关性和重要程度差异性.针对以上问题,提出一种基于注意力机制的循环门控单元(recurrent gate unit,GRU)编码预测方法,该方法利用GRU神经网络挖掘网络安全态势数据之间的时间相关性;引入注意力机制计算安全指标的分配权重并将...

关 键 词:网络安全态势预测  注意力机制  循环门控单元  粒子群优化算法
收稿时间:2020-03-11

Security situation prediction method of GRU neural network
Chunrong HE,Jiang ZHU. Security situation prediction method of GRU neural network[J]. System Engineering and Electronics, 2021, 43(1): 258-266. DOI: 10.3969/j.issn.1001-506X.2021.01.32
Authors:Chunrong HE  Jiang ZHU
Affiliation:School of Communication and Information Engineering, Chongqing University of Posts and
Abstract:Traditional network security situation prediction methods rely on the accuracy of the historical situation value, and there are differences in the correlation and importance between various network security factors. For the above mentioned problems, the recurrent gated unit (GRU) coding prediction method based on the attention mechanism is proposed. Attention mechanism is introduced to calculate the weight of the security index and it is coded as the network security situation value. The improved particle swarm optimization (PSO) algorithm is used to optimize the super parameters to accelerate the training of GRU neural network. Simulation results show that the proposed method has faster convergence speed and lower complexity, smaller mean square error (MSE) and mean absolute error (MAE) under different prediction time.
Keywords:network security situation prediction  attention mechanism  recurrent gated unit(GRU)  particle swarm optimization(PSO)algorithm  
本文献已被 维普 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号