首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙熵的时序数据属性约简及规则提取研究
引用本文:王加阳 廖超. 基于粗糙熵的时序数据属性约简及规则提取研究[J]. 湖南大学学报(自然科学版), 2005, 32(4): 112-116
作者姓名:王加阳 廖超
作者单位:中南大学,信息科学与工程学院,湖南,长沙,410083;中南大学,信息科学与工程学院,湖南,长沙,410083
基金项目:国家自然科学基金资助项目(60474047)
摘    要:分析了近似质量在提取非确定性规则方面的不足,并基于粗糙熵的预测成功度概念,结合时序数据特点,提出一种属性约简及规则提取策略.该策略在对时序数据进行属性约简时,采用粗糙熵与时间距离相结合的方法,使得最终得到的约简在时序方面是较优的,最后使用UCI数据库进行仿真实验,效果良好.该策略在工程领域处理时序数据方面有一定的应用价值.

关 键 词:粗糙集理论  精糙熵  时间序列  属性约简  规则提取
文章编号:1000-2472(2005)04-0012-05
收稿时间:2005-01-12
修稿时间:2005-01-12

Research on the Attribute Reduction and Rule Acquisition of Time-Series Data Based on Rough Entropy
Wang JiaYang;Liao Chao. Research on the Attribute Reduction and Rule Acquisition of Time-Series Data Based on Rough Entropy[J]. Journal of Hunan University(Naturnal Science), 2005, 32(4): 112-116
Authors:Wang JiaYang  Liao Chao
Abstract:The deficiency of retrieving uncertainty rules with approximation quality was analyzed. According to the characteristics of time-series data,a strategy on data attribute reduction and rule acquisition using the concept of prediction success based on rough entropy was proposed.This strategy introduced a method that combined rough entropy and time distance to reduce the attributes of time-series data.The reduction obtained from time-series data had good time characteristics,Finally, simulation experiments using the UCI database confirmed that the algorithm had good effects.This strategy will be valuable in the field of engineering for the processing of time-series data.
Keywords:rough set theory  rough entropy   time-series   attribute reduction   rule acquisition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《湖南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号