首页 | 本学科首页   官方微博 | 高级检索  
     

Hammerstein系统自适应神经网络控制算法的收敛性分析
引用本文:张卫,袁廷奇. Hammerstein系统自适应神经网络控制算法的收敛性分析[J]. 系统工程与电子技术, 2001, 23(5): 22-23
作者姓名:张卫  袁廷奇
作者单位:1. 行自动控制研究所,
2. 西安交通大学,
摘    要:对一类确定性Hammerstein系统,给出了基于神经网络的自适应控制算法。考虑到神经网络的非线性特点,特别是其自适应学习能力,控制系统采用两个神经网络分别作为估计器和控制器,通过在线训练网络的权重来获得模型参数和控制输入。神经网络的训练用Widrow-Hoff学习规则。对算法的全局收敛性进行分析表明系统具有总体收敛性,输入输出有界。

关 键 词:神经  网络  自适应控制  收敛
文章编号:1001-506X(2001)05-0022-02
修稿时间:2000-03-09

Convergence Analysis for Adaptive Neural Networks Control of Hammerstein System
Zhang Wei,Yuan Tingqi. Convergence Analysis for Adaptive Neural Networks Control of Hammerstein System[J]. System Engineering and Electronics, 2001, 23(5): 22-23
Authors:Zhang Wei  Yuan Tingqi
Affiliation:Zhang Wei Yuan Tingqi Flight Automatic Control Institute,Xi'an 710065 Xi'an Jiaotong University,710049
Abstract:An adaptive control algorithm for deterministic hammerstein system based on neural networks is presented. Considering the nonlinearity and the adaptive learning ability of the neural network, two neural networks are used as estimator and controller of the control system respectively. The train of the networks is used Widrow-Hopff rule. The convergence of the control algorithm is analyzed and the results are shown that the system is global convergence and has bounds for the input and output.;
Keywords:Neural Networks Adaptive control Convergence
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号