首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的细胞图像分割与类型判别
作者姓名:胡威  汪春梅  张见
作者单位:上海师范大学信息与机电工程学院;华东理工大学信息科学与工程学院
摘    要:组织细胞图像形态各异、大小不一、纹理变化多样等特点,导致难以精准地分割细胞区域的问题,对此提出了一种基于卷积神经网络(CNN)和边缘聚类方法的新算法.对原始切片采用染色校正预处理,提高色彩对比度,利用CNN得到初步分割结果,结合边缘聚类方法提升初步分割结果的连续性和完整性.在此基础上,结合计算机视觉技术,获得分割图像中细胞颗粒的基本属性特征,并使用Softmax分类器判别细胞类型.实验结果表明:相较于经典的卷积神经网络、阈值分割、模糊聚类等细胞图像分割算法,该算法在分割结果的完整度方面提升了6.15个百分点.

关 键 词:卷积神经网络(CNN)   边缘聚类   图像分割   分类判别
收稿时间:2018-06-27
本文献已被 CNKI 等数据库收录!
点击此处可从《上海师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海师范大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号