Abstract: | An Erratum has been published for this article in Journal of Forecasting 22(6‐7) 2003, 551 The Black–Scholes formula is a well‐known model for pricing and hedging derivative securities. It relies, however, on several highly questionable assumptions. This paper examines whether a neural network (MLP) can be used to find a call option pricing formula better corresponding to market prices and the properties of the underlying asset than the Black–Scholes formula. The neural network method is applied to the out‐of‐sample pricing and delta‐hedging of daily Swedish stock index call options from 1997 to 1999. The relevance of a hedge‐analysis is stressed further in this paper. As benchmarks, the Black–Scholes model with historical and implied volatility estimates are used. Comparisons reveal that the neural network models outperform the benchmarks both in pricing and hedging performances. A moving block bootstrap is used to test the statistical significance of the results. Although the neural networks are superior, the results are sometimes insignificant at the 5% level. Copyright © 2003 John Wiley & Sons, Ltd. |