摘 要: | 深入研究人类驾驶员的驾驶行为和习性,对于推进智能汽车的拟人化决策规划,改善驾驶安全性具有重要意义。针对高速公路这一典型场景,基于NGSIM(Next Generation Simulation)数据集提取有效表征换道驾驶行为的特征参数,分析换道驾驶行为与驾驶参数的相关性,量化驾驶行为特性,建立了基于高斯混合-隐马尔科夫理论(Gaussian mixed model-hidden Markov model,GMM-HMM)的换道意图识别模型。 研究结果表明:该模型识别准确率较高,在换道点1.0 s之前的换道行为识别准确率达到95.6%,在有换道意图的时刻识别准确率超过80%,可应用于智能汽车换道策略的拟人化设计,有效降低换道风险,改善驾驶安全。
|