摘 要: | 目的 针对变压器油中的 H2 、CH4 、C2 H6 、C2 H4 、C2 H2 气体的浓度存在耦合性问题及电力变压器故障诊断精
度较低的问题,提出了利用堆栈稀疏自编码器( Stacked Sparse Autoencoder, SSAE) 和 XGBoost 模型结合的方法来
提高电力变压器故障诊断的准确率。 方法 首先利用堆栈稀疏自编码器( Stacked Sparse Autoencoder, SSAE) 处理
DGA 数据;其次确定自编码器堆栈个数,确定隐含层数目;然后利用 SSAE 对原始数据进行数据转换,提取深层次
特征信息;接着为了消除数据之间数量级差异较大的问题,对提取后的特征数据归一化进行处理;最后将处理之后
得到的数据再输入 XGBoost 模型之中进行分类验证。 结果 本文建立的基于堆栈稀疏自编码器与 XGBoost 的电力
变压器故障诊断方法诊断准确率为 91. 11%,高于常用的其他机器学习模型。 结论 实验结果验证了方法的有效性,
表明基于堆栈稀疏自编码器与 XGBoost 的电力变压器故障诊断方法能够有效提高故障诊断的准确率。
|