首页 | 本学科首页   官方微博 | 高级检索  
     

组合预测模型在地方财政收入预测中的应用
引用本文:范敏,石为人,梁勇林,华海玉. 组合预测模型在地方财政收入预测中的应用[J]. 重庆大学学报(自然科学版), 2008, 31(5): 536-540
作者姓名:范敏  石为人  梁勇林  华海玉
作者单位:重庆大学自动化学院,重庆,400030;重庆大学自动化学院,重庆,400030;重庆大学自动化学院,重庆,400030;重庆大学自动化学院,重庆,400030
基金项目:重庆市科技攻关项目 , 重庆市自然科学基金
摘    要:根据地方财政收入预测受到多因素影响和经济系统具有非线性本质的特点,针对现有预测方法的不足,提出了一种组合预测方法。该方法首先通过灰色关联分析确定影响地方财政收入的主要指标,然后用灰色预测模型分别对各指标进行预测,最后将各指标的预测值作为输入,相应的地方财政收入实际值作为输出,训练并建立神经网络模型。实例分析表明灰色关联分析排除了非主要指标的干扰,灰色预测模型提供了较完善的输入数据,神经网络模型考虑了各主要指标的关联关系。实验结果证实该方法在地方财政收入预测中是有效可行的。

关 键 词:地方财政收入预测  灰色关联分析  灰色模型  神经网络
文章编号:1000-582X(2008)05-0536-05
修稿时间:2008-01-28

Application of a combination forecasting model in local financial revenue forecasting
FAN Min,SHI Wei-ren,LIANG Yong-lin,HUA Hai-yu. Application of a combination forecasting model in local financial revenue forecasting[J]. Journal of Chongqing University(Natural Science Edition), 2008, 31(5): 536-540
Authors:FAN Min  SHI Wei-ren  LIANG Yong-lin  HUA Hai-yu
Abstract:Local financial revenue indices are affected by many factors and their economic systems thus are characterized by nonlinear properties.Moreover,current forecasting methods have a few disadvantages.A combination forecasting model therefore was proposed.The methods include the followings steps: First,the main factors for local financial revenue were confirmed via gray correlation analysis.Second,the gray forecasting model,GM(1,1),was applied to predict each index.Finally,the results of GM(1,1) were used as inputs and the actual data of relevant local financial revenue was used as outputs,then,a neural network was built.The results suggest that the gray correlation analysis can filter the accidental indices,the gray forecasting model can provide good input data sequences,and the neural network can process the relationships of indices.Experimental results demonstrated the availability and feasibility of the model in local financial revenue forecasting.
Keywords:local financial revenue forecasting  gray correlation analysis  gray model  neural networks
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号