首页 | 本学科首页   官方微博 | 高级检索  
     

保留边界特征的点云简化算法
引用本文:赵伟玲,谢雪冬,程俊廷. 保留边界特征的点云简化算法[J]. 黑龙江科技学院学报, 2013, 0(1): 83-88
作者姓名:赵伟玲  谢雪冬  程俊廷
作者单位:黑龙江科技学院现代制造工程中心
基金项目:国家自然科学基金项目(51075128);国家科技重大专项项目(2010ZX04016-012);博士后研究人员落户黑龙江科研启动资助金项目(LBH-Q12019)
摘    要:
为有效简化点云数据,提出保留边界特征的点云简化算法。该算法利用三维栅格划分法建立散乱点云的空间拓扑关系,计算每个数据点的近邻,通过球拟合法求得其曲率和具有方向性的法向量,采用投影点个数比值法找到并保留点云边界,根据具体情况设定所需阈值,对非边界点进行分类,通过对点的曲率与平均曲率比较、近邻保留点与近邻点个数比例,完成点云简化。实验结果表明:该算法不仅能对点云进行直接有效地简化,而且还能很好地保留点云模型的细节特征,简化比例达25%~40%。该方法可以满足不同种类点云简化的要求,能够提高计算机运行效率。

关 键 词:散乱点云  数据简化  法向量  曲率  边界特征提取

Research on point cloud simplification with boundary features reservation
ZHAO Weiling,XIE Xuedong,CHENG Junting. Research on point cloud simplification with boundary features reservation[J]. Journal of Heilongjiang Institute of Science and Technology, 2013, 0(1): 83-88
Authors:ZHAO Weiling  XIE Xuedong  CHENG Junting
Affiliation:(Modern Manufacture Engineering Center,Heilongjiang Institute of Science & Technology, Harbin 150027,China)
Abstract:
This paper proposes a simplification method for point cloud with boundary feature reservation for effective simplification of the point cloud. This algorithm consists of firstly using the 3 D grid sub- division method to represent the spatial topology relationship of the scattered point cloud and calculate the k-nearest neighbors for each data point, using the ball-fitting method to simply compute the curvature and the directional normal vector, and then identifying and reserving all the boundary points according to the ratio of the number of projected points, setting the desired thresholds by the specific situations, and classifying the non-boundary points through these thresholds, and finally simplifying the scattered point cloud according to comparative study of curvature and mean curvature of the points and the proportion of reserved points in their k-nearest neighbors. The algorithm is verified by reducing some typical point cloud cases with various surface features. The experimental results indicate that the algorithm, marked by setting the threshold size according to simplification requirements, allows the direct and effective reduction of point cloud, while preserving detail feature of point cloud model, with a simplification proportion up to 25%-40%. This method can fulfill the requirements for simplifying different point cloud and improve the efficiency of computer operation.
Keywords:scattered point cloud  data simplification  normal vector  curvature  boundary extraction
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号