首页 | 本学科首页   官方微博 | 高级检索  
     

Newton空间中某类泛函极小的局部有界性预备定理
引用本文:陈平,王兰宁,丁建中,张艳霞. Newton空间中某类泛函极小的局部有界性预备定理[J]. 安徽师范大学学报(自然科学版), 2009, 32(2)
作者姓名:陈平  王兰宁  丁建中  张艳霞
作者单位:安徽师范大学,数学计算机科学学院,安徽,芜湖,241000;南京邮电学院,江苏,南京,210018;南京理工大学,江苏,南京,210018;安徽工业大学,安徽,马鞍山,243002
摘    要:
研究了Newton空间中一类泛函极小的正则性问题.Newton空间是Sobolev空间在度量空间中的推广.本文证明了该泛函极小的局部有界性预备定理.这一定理为我们进一步研究该泛函极小的局部有界性及正则性奠定了基础.

关 键 词:Newton空间  De Giorgi类  Sobolev空间

A Local Boundedness Preparation Theorem of a Certain Functional Minimizer on Newton Spaces
CHEN Ping,WANG Lan-ning,DING Jian-zhong,ZHANG Yan-xia. A Local Boundedness Preparation Theorem of a Certain Functional Minimizer on Newton Spaces[J]. Journal of Anhui Normal University(Natural Science Edition), 2009, 32(2)
Authors:CHEN Ping  WANG Lan-ning  DING Jian-zhong  ZHANG Yan-xia
Affiliation:1.Anhui Normal University;Wuhu 241000;China;2.Nanjing University of Posts and Telecommunications;Nanjing 210018;3.Nanjing University of Science and Technology;4.Anhui University of Technology;Maanshan 243002;China
Abstract:
We study an certain functional minimizer on the so called Newton space which is a generation of Sobolev space in a metric measure space with some extra conditions.In this paper we proved a preparation theorem.Based on this result,we can develop the boundedness and regularity of the minimizer.
Keywords:Newton spaces  De Giorgi calss  Sobolev spaces  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号