首页 | 本学科首页   官方微博 | 高级检索  
     

一类半正二阶常微分方程边值问题正解的存在性
引用本文:魏晋滢,王素云,李永军. 一类半正二阶常微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2019, 54(10): 7-12. DOI: 10.6040/j.issn.1671-9352.0.2018.263
作者姓名:魏晋滢  王素云  李永军
作者单位:兰州城市学院数学学院, 甘肃 兰州 730070
基金项目:国家自然科学基金资助项目(11761044,11661048);兰州城市学院博士科研启动基金资助项目(LZCU-BS2015-01);兰州城市学院重点建设学科资助项目(LZCU-ZDJSXK-201706)
摘    要:
考虑非线性二阶常微分方程边值问题u″+c(t)u+λf(t,u)=0, 00, c(·)∈C[0,1]满足-∞π2对t∈[0,1]成立, f:[0,1]×R+→R连续且满足f≥-L, L>0是常数。通过利用相应线性边值问题的Green函数及其性质和Krasnoselskii不动点定理,获得了问题正解的存在性结果。

关 键 词:半正问题  边值问题  Green函数  正解  不动点定理  

Existence of positive solutions to a semipositone second-order boundary value problem
WEI Jin-ying,WANG Su-yun,LI Yong-jun. Existence of positive solutions to a semipositone second-order boundary value problem[J]. Journal of Shandong University, 2019, 54(10): 7-12. DOI: 10.6040/j.issn.1671-9352.0.2018.263
Authors:WEI Jin-ying  WANG Su-yun  LI Yong-jun
Affiliation:School of Mathematics, Lanzhou City University, Lanzhou 730070, Gansu, China
Abstract:
We consider the existence of positive solutions to the boundary value problemu″(t)+c(t)u+λf(t,u)=0, 0λ>0, c(·)∈C[0,1 satisfies -∞π2 for t∈[0,1, f:[0,1]×R+→R is continuous function and satisfies f≥-L, L>0 is a constant. By investigating the sign property of the Green function of the associated linear boundary value problem, we show the existence of positive solutions of semipositone problems. The proof of the main result is based on Krasnoselskii fixed point theorems in cone.
Keywords:semipositone problem  boundary value problem  Green function  positive solution  fixed point theorem  
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号