首页 | 本学科首页   官方微博 | 高级检索  
     

基于概率图的作战任务智能规划方法
引用本文:王泊涵,吴超,柯文俊,郑恺之,付修锋,江山. 基于概率图的作战任务智能规划方法[J]. 系统工程与电子技术, 2020, 42(12): 2795-2801. DOI: 10.3969/j.issn.1001-506X.2020.12.16
作者姓名:王泊涵  吴超  柯文俊  郑恺之  付修锋  江山
作者单位:1. 国防科技大学系统工程学院, 湖南 长沙 4100732. 北京计算机技术及应用研究所, 北京 1008543. 中国科学院计算技术研究所, 北京 1001904. 中国科学院大学计算机学院, 北京 100049
基金项目:装备发展部预先研究项目(31510010501)
摘    要:针对人工调配作战资源及规划方案效率低下的问题,本文提出一种基于概率图的作战任务智能规划方法,通过统计分析判定任务间因果关系,采用GNN抽取任务中的关键事件构建概率图并计算任务规划方案成功的概率,进而基于时间序列方法预测战场态势变化,实现辅助指挥员智能决策。最后,本文在某联合登岛案例中开展了方法验证,结果表明,所提出的方法可成功实现任务规划并具有可解释性,可实现对战场态势变化的预测和快速响应,在战场上为军队提供强有力的支持。

关 键 词:战场态势  可解释性  概率图  GNN  时间序列预测  
收稿时间:2020-01-12

Intelligent planning method of combat mission based on probability graph
Bohan WANG,Chao WU,Wenjun KE,Kaizhi ZHENG,Xiufeng FU,Shan JIANG. Intelligent planning method of combat mission based on probability graph[J]. System Engineering and Electronics, 2020, 42(12): 2795-2801. DOI: 10.3969/j.issn.1001-506X.2020.12.16
Authors:Bohan WANG  Chao WU  Wenjun KE  Kaizhi ZHENG  Xiufeng FU  Shan JIANG
Affiliation:1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China2. Beijing Institute of Computer Technology and Application, Beijing 100854, China3. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China4. College of Computer Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:In view of the low efficiency of manual allocation of combat resources and planning scheme, an intelligent planning method of combat tasks is proposed based on probability graph. The causality between tasks is determined by statistical analysis, and the key events in the task are extracted by using graph neural network (GNN) to construct probability diagram and calculate the success probability of mission planning scheme. Then, the change of battlefield situation can be predicted and the commander can be assisted to achieve intelligent decision based on the time series method. Finally, the method verification is carried out in a joint landing case. The results show that the proposed method can realize the mission planning successfully with interpretability, the prediction and rapid response of the battlefield situation changes, and provide strong support for the army in the battlefield.
Keywords:battlefield situation  interpretability  probability graph  graph neural network (GNN)  time series prediction  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号