首页 | 本学科首页   官方微博 | 高级检索  
     

一类四元数矩阵方程的最小二乘解
引用本文:徐清舟,张志立. 一类四元数矩阵方程的最小二乘解[J]. 郑州大学学报(理学版), 2005, 37(1): 13-15,20
作者姓名:徐清舟  张志立
作者单位:1. 许昌学院数学系,河南,许昌,461000
2. 许昌学院网络中心,河南,许昌,461000
摘    要:利用广义自反矩阵和广义反自反矩阵的性质讨论了线性方程组AX=b和矩阵方程AX=B的最小二乘解问题.当A为广义自反矩阵或广义反自反矩阵时,可将线性方程组AX=b的最小二乘解问题化为两个较小独立的子问题;当A、B都是广义自反矩阵或广义反自反矩阵时,可将矩阵方程AX=B的最小二乘解问题化为线性方程组的最小二乘解问题,从而使这些问题的讨论得到简化.

关 键 词:四元数体  矩阵方程  最小二乘解
文章编号:1671-6841(2005)01-0013-03

Least Squares Solutions of Matrix Equations over Quaternion Field
Xu Qingzhou,Zhang Zhili. Least Squares Solutions of Matrix Equations over Quaternion Field[J]. Journal of Zhengzhou University(Natrual Science Edition), 2005, 37(1): 13-15,20
Authors:Xu Qingzhou  Zhang Zhili
Abstract:By using of the properties of the generalization reflexive (antireflexive) matrices,the problems are discussed that least squares solutions of systems of linear equation AX=b and matrices equation AX=B.When A is the generalization reflexive (antireflexive) matrices, least squares problems of systems of linear equation AX=b can be decomposed into two smaller and independent subproblems.When A,B both are the generalization reflexive(antirefiexive) matrices, least squares problems of matrix equation AX=B can be decomposed into least squares problems of systems of linear equation.By this way, the discussion of these problems can be simplified.
Keywords:quaternion field  matrix equations  least squares solution
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号