首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于Q学习的管制员Agent学习行为研究
摘 要:
管制员Agent是空中交通运行仿真系统中的核心部分,为了提高其知识库的完备程度,做到空中交通的精确仿真,可以考虑将机器学习理论引入管制员Agent模型.研究了相关机器学习算法,提出管制员Agent的个体机器学习行为,选择Q学习算法对管制员Agent的学习行为进行建模,使管制员Agent能在空中交通运行仿真中取得最优策略,完善自身冲突解脱知识库的不足.仿真结果证明了管制员Agent学习行为的合理性.
本文献已被
CNKI
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号