首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的自适应机动目标跟踪算法
作者姓名:巫春玲  韩崇昭
作者单位:1. 长安大学电子与控制工程学院,西安710064;
2. 西安交通大学电子与信息工程学院,西安710049;
摘    要:在"当前"统计(CS)模型基础上,提出了一种新的机动目标自适应滤波算法,当前统计模型-修正强跟踪滤波(CS-MSTF)算法。新算法在保留"当前"统计模型及强跟踪滤波器(STF)对一般机动目标跟踪精度高的优点的同时,作出以下改进:针对强跟踪滤波器在机动部分获得完美性能的同时,非机动部分的精度却不理想的缺陷,对预测误差协方差及渐消因子的计算作出修正,同时改进机动部分和非机动部分的精度;将目前常用的估计误差协方差的计算公式采用更加可靠的Joseph公式,增强了数值的稳定性和算法的鲁棒性。蒙特卡罗仿真表明,新算法的性能优于当前统计模型-强跟踪滤波(CS-STF)算法,能够进行有效估计。
Abstract:
Based on the "current" statistical model,a new adaptive maneuvering target tracking algorithm,CS-MSTF,was proposed. The new algorithm,keeping the merits of high tracking precision that the "current " statistical model and strong tracking filter(STF) have in tracking maneuvering target has made the modifications as such:First,STF has the defect that it achieves the perfert performance in maneuvering segment at a cost of the precision in non-naneuvering segment,so the new algorithm modifies the prediction error covariance matrix and the fading factor to improve the tracking precision both of the maneuvering segment and non-maneuvering segment; The estimation error covariance matrix was calculated using the Joseph form,which is more stable and robust in numerical. The Monte-Carlo simulation shows that the CS-MSTF algorithm has a more excellent performance than CS-STF and can esitmate efficiently.

关 键 词:“当前”统计模型  机动目标跟踪  强跟踪滤波器  自适应滤波
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号