首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征值的频谱感知算法仿真研究
引用本文:刘志文,张杭,孙少凡. 基于特征值的频谱感知算法仿真研究[J]. 系统仿真学报, 2010, 0(12)
作者姓名:刘志文  张杭  孙少凡
作者单位:1. 解放军理工大学通信工程学院,南京210007;
2. 北京信息技术研究所,北京100094;
摘    要:频谱感知是认知无线网络中的一个重要功能,是实现其他功能的基础。研究了新型的基于特征值的感知算法,充分利用随机矩阵的渐近谱分布特性和特征值的收敛特性来设置判决门限,提高感知性能。理论分析和仿真结果均表明,新型算法性能明显优于典型的能量检测算法,克服了能量检测算法的噪声不确定性问题。
Abstract:
Spectrum Sensing is an important function in the cognitive radio networks.A new eigenvalue-based detection scheme for spectrum sensing was studied,and decision thresholds were set to have good performance by using the property of asymptotic spectrum distribution and convergence of maximum eigenvalue of random matrices.Theoretical analysis and simulations results show that the new detection scheme can obviously outperform the classical energy detection,and overcome the noise uncertainty problem.

关 键 词:认知无线网络  频谱感知  特征值  随机矩阵理论

Simulation and Analysis of Eigenvalue-based Spectrum Sensing Algorithms for Cognitive Radio Networks
LIU Zhi-wen,SUN Shao-fan,ZHANG Hang. Simulation and Analysis of Eigenvalue-based Spectrum Sensing Algorithms for Cognitive Radio Networks[J]. Journal of System Simulation, 2010, 0(12)
Authors:LIU Zhi-wen  SUN Shao-fan  ZHANG Hang
Abstract:Spectrum Sensing is an important function in the cognitive radio networks.A new eigenvalue-based detection scheme for spectrum sensing was studied,and decision thresholds were set to have good performance by using the property of asymptotic spectrum distribution and convergence of maximum eigenvalue of random matrices.Theoretical analysis and simulations results show that the new detection scheme can obviously outperform the classical energy detection,and overcome the noise uncertainty problem.
Keywords:cognitive radio networks  spectrum sensing  eigenvalue  random matrix theory
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号