首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化的粒子滤波算法应用研究
引用本文:邢家丽. 基于粒子群优化的粒子滤波算法应用研究[J]. 科学技术与工程, 2012, 12(4): 936-939
作者姓名:邢家丽
作者单位:江苏科技大学电子信息学院,镇江,212003
摘    要:粒子群优化算法是一种基于群体智能理论的全局寻优算法。文中首先对粒子群优化算法的原理和实现过程进行了研究,然后比较了粒子群优化算法与粒子滤波算法的异同,并将粒子群优化算法引入到粒子滤波算法中,解决了粒子贫乏的问题,提高了每个粒子的作用效果,同时给出了PSO-PF算法的基本步骤。最后将PSO-PF算法应用于自航耙吸挖泥船的泥舱溢流损失估计中,采用实测工程数据进行了仿真,仿真结果表明该PSO-PF算法基本达到了预期的效果,为自航耙吸挖泥船操作人员的施工提供了决策支持。

关 键 词:粒子滤波  粒子群优化算法  自航耙吸挖泥船  溢流损失
收稿时间:2011-11-13
修稿时间:2011-11-25

The application research of particle filter based on Particle Swarm Optimization
Xing Jia-li. The application research of particle filter based on Particle Swarm Optimization[J]. Science Technology and Engineering, 2012, 12(4): 936-939
Authors:Xing Jia-li
Affiliation:(School of Electronics Information,Jiangsu University of Science and Technology,Zhengjiang 210003,P.R.China)
Abstract:Particle Swarm Optimization(PSO) is a global optimization algorithm based on swarm intelligence theory.Firstly,the theory and implementation process of PSO are researched.Then,the similarities and differences between PSO and PF are compared.Also,PSO is brought into PF,to solve the problem of particle-poor problem,which improves the effect of each particle.At the same time,the basic steps of PSO-PF are given.Lastly,PSO-PF is applied in hopper model of trailing suction hopper dredger,to estimate the overflow loss.In the text,real engineering data and MATLAB language are used to simulate.The simulation results are basically achieved the expected goal,which provides decision support for the operator’s construction.
Keywords:Particle Filter   Particle Swarm Optimization   Trailing Suction Hopper Dredger   The overflow loss  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号