首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于层次聚类的流数据挖掘方法
引用本文:单劲松. 一种基于层次聚类的流数据挖掘方法[J]. 太原师范学院学报(自然科学版), 2008, 7(4): 72-74
作者姓名:单劲松
作者单位:淮阴工学院计算机工程系,江苏淮安,223003
摘    要:流数据的特点在于数据流快速、有序地到达,并且数据海量,许多应用领域中生成的数据都可以归结为此类型.数据挖掘技术可以从海量的数据中发现有意义的知识模型,传统的数据挖掘算法通常是针对静态数据集,对流数据却无法有效地处理.文章试图从层次聚类角度处理流数据,并探讨了一种基于最小代价函数的层次聚类算法.

关 键 词:数据挖掘  流数据  层次聚类

A Streaming Data Mining Method Based on Hierarchical Clustering
Shan Jinsong. A Streaming Data Mining Method Based on Hierarchical Clustering[J]. Journal of Taiyuan Normal University:Natural Science Edition, 2008, 7(4): 72-74
Authors:Shan Jinsong
Affiliation:Shan Jinsong (Department of Computer Engineering,Huaiyin Institute of Technology,Huaian 223003,China)
Abstract:Streaming data are rapid,continuous,time-series and massive data elements.Many applications in different fields involve the data model.Data mining can discovery interesting knowledge patterns and have developed greatly in recent years.But,data mining algorithms which were put forword for traditional static data set can not mine interesting knowledge patterns effectively from streaming data model.Mining data streams needs special learning algorithms.The article proposes a hierarchical clustering mining algorithm on streaming data based on the minimum cost function.
Keywords:data mining  streaming data  hierarchical clustering
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号