首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制和改进CLDNN的雷达辐射源识别
引用本文:崔邦彦,田润澜,王东风,崔钢,石静苑. 基于注意力机制和改进CLDNN的雷达辐射源识别[J]. 系统工程与电子技术, 2021, 43(5): 1224-1231. DOI: 10.12305/j.issn.1001-506X.2021.05.09
作者姓名:崔邦彦  田润澜  王东风  崔钢  石静苑
作者单位:1. 空军航空大学航空作战勤务学院, 吉林 长春 1300222. 空军研究院, 北京 1000123. 空军航空大学航空基础学院, 吉林 长春 130022
基金项目:国家自然科学基金(61571462)资助课题。
摘    要:传统的辐射源识别通过比对、匹配辐射源信号与雷达数据库来识别,这种方法很难满足战时高效、快速和准确的识别要求.随着机器学习方法的提出,诸如支持向量机等算法在辐射源识别领域的运用,可以满足战时高效、快速的识别要求,但这种方法在低信噪比环境下,辐射源识别准确率低.针对上述问题,采用深度学习,引入注意力机制和特征融合方法,提出...

关 键 词:辐射源识别  深度学习  时间序列  注意力机制  特征融合  一维卷积长短时深度神经网络
收稿时间:2020-09-07

Radar emitter identification based on attention mechanism and improved CLDNN
CUI Bangyan,TIAN Runlan,WANG Dongfeng,CUI Gang,SHI Jingyuan. Radar emitter identification based on attention mechanism and improved CLDNN[J]. System Engineering and Electronics, 2021, 43(5): 1224-1231. DOI: 10.12305/j.issn.1001-506X.2021.05.09
Authors:CUI Bangyan  TIAN Runlan  WANG Dongfeng  CUI Gang  SHI Jingyuan
Affiliation:1. School of Aviation Operations and Services, Aviation University of Air Force, Changchun 130022, China2. Air Force Research Institute, Beijing 100012, China3. School of Aeronautical Foundation, Aviation University of Air Force, Changchun 130022, China
Abstract:Traditional emitter identification is based on the comparison and matching of emitter signal and radar database,which is difficult to meet the requirements of high efficiency,fast and accurate identification in wartime.With the development of machine learning methods,such as the application of support vector machine(SVM)and other algorithm in the field of emitter identification,can meet the requirements of efficient and rapid identification in wartime.However,this method has low accuracy of emitter identification in low signal to noise ratio environment.In order to solve the above problems,the deep learning is used,the attention mechanism and feature fusion method is introduced,and a indentification model of attention-mechanism feature-fusion one-dimensional convolution long-short-term-memory deep neural networks(AF1CLDNN)is proposed.The effectiveness of attention mechanism and feature fusion method is verified by experiments,and the new indentification model has high indentification accuracy and indentification speed in low signal to noise ratio environment.
Keywords:emitter identification  deep learning  time series  attention mechanism  feature fusion  one-dimensional convolutional long-short-term-memory deep neural networks(1CLDNN)
本文献已被 维普 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号