首页 | 本学科首页   官方微博 | 高级检索  
     

基于运动特征的人体异常行为识别
引用本文:桑海峰,郭昊,徐超. 基于运动特征的人体异常行为识别[J]. 中国科技论文在线, 2014, 0(7): 812-816
作者姓名:桑海峰  郭昊  徐超
作者单位:沈阳工业大学信息科学与工程学院,沈阳110870
基金项目:高等学校博士学科点专项科研基金资助项目(20122102120004);辽宁省教育厅科学研究项目(L2012034)
摘    要:
为了提高监控视频中人体异常行为识别的实时性和准确率,提出了基于运动特征的人体异常行为识别方法。利用分块更新的背景差法从图像中提取出完整的人体轮廓,通过区域关联结合颜色直方图实现人体目标跟踪,解决了非线性运动时漏跟和误跟的问题。通过人体运动轨迹、运动姿态及运动时间3个参数,对人的5种异常行为进行分析判断。实验结果表明,所提算法不仅能实时地对人体进行检测和跟踪,还能快速、准确地识别出异常行为,具有简单实用的特点。

关 键 词:分块更新  运动特征  目标跟踪  异常行为识别

Human abnormal behavior recognition based on motion characteristics
Sang Haifeng,Guo Hao,Xu Chao. Human abnormal behavior recognition based on motion characteristics[J]. Sciencepaper Online, 2014, 0(7): 812-816
Authors:Sang Haifeng  Guo Hao  Xu Chao
Affiliation:(School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)
Abstract:
A characteristics-based human abnormal behavior detection method is proposed to improve accuracy and real-time per-formance of human abnormal behavior detection in surveillance video.Chunked update-based background subtraction technique is used to extract complete human silhouette from the image.The regional association is combined with color histogram to track hu-man target to solve the miss tracking and target-missing problems in nonlinear movement.Three parameters of human movement trajectory,moving posture and time of movement areselected to identify five human abnormal behaviors.In the experiments,the human body is detected and tracked in real time,and the abnormal behaviors could be identified quickly and accurately using pro-posed algorithm.
Keywords:chunked update  motion characteristics  target tracking  abnormal behavior identification
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号