首页 | 本学科首页   官方微博 | 高级检索  
     

量子K最近邻算法
引用本文:李强,蒋静坪. 量子K最近邻算法[J]. 系统工程与电子技术, 2008, 30(5): 940-943
作者姓名:李强  蒋静坪
作者单位:浙江大学电气工程学院,浙江,杭州,310027
摘    要:
为减少经典K最近邻算法的时间复杂度,提出了量子K最近邻算法(QKNN)。介绍了QKNN算法的构造步骤,然后为减少量子计数子程序的运行时间,进一步将固定的K值修改为可变的k,形成改进的k可变的量子最近邻算法(QkvNN)。为弥补由于最近邻个数K变化带来的分类错误率上升的影响,在Boosting算法框架下,用三个由QkvNN算法训练的弱分类器,去构造了一个强分类器,从而提高单独运行QkvNN的分类精度。在此算法中,由于利用了量子计算的强大能力,使得经典K最近邻算法的时间复杂度从O(N)减小为O(N)。

关 键 词:量子计算  量子计数  量子搜索  模式识别  K最近邻
文章编号:1001-506X(2008)05-0940-04
修稿时间:2007-05-18

Quantum K nearest neighbor algorithm
LI Qiang,JIANG Jing-ping. Quantum K nearest neighbor algorithm[J]. System Engineering and Electronics, 2008, 30(5): 940-943
Authors:LI Qiang  JIANG Jing-ping
Abstract:
A novel quantum learning method is presented,which combines quantum computation with classical K-nearest-neighbor,called quantum K-nearest-neighbor.Its steps are introduced in detail.Further,in order to save to running time of quantum counting subroutine,the fired K is revised to the changeable K.Under the framework of Boosting algorithm,a strong classifier is build,which consists of three weak classifiers,each trained by the quantum k-varying nearest neighbor,to improve the performance of classification.In this algorithm,the time complexity of classical K-nearest-neighbor algorithm is reduced from O(N) to O(N) by means of the power of quantum algorithms.
Keywords:quantum computation  quantum counting  quantum searching algorithm  pattern recognition  K nearest neighbor
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号