首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌人工蜂群算法优化的SVM 齿轮故障诊断
引用本文:刘霞,张姗姗,胡铭鉴. 基于混沌人工蜂群算法优化的SVM 齿轮故障诊断[J]. 吉林大学学报(信息科学版), 2015, 33(4): 476-484. DOI: 10.3969/j.issn.1671-5896.2015.04.020
作者姓名:刘霞  张姗姗  胡铭鉴
作者单位:1. 东北石油大学电气信息工程学院, 黑龙江大庆163318;2. 新疆石油勘探设计研究(有限公司) 仪信所, 新疆克拉玛依834000
摘    要:
为克服支持向量机中模型参数的随意选择对分类性能造成的不利影响, 提出了基于混沌人工蜂群算法的支持向量机(CABC鄄SVM: Chaotic Artificial Bee Colony algorithm of Support Vector Machine)参数优化方法。该方法采用Logistic 混沌映射初始化种群和锦标赛选择策略, 对支持向量机的惩罚因子和核函数参数进行优化时以分类准确率作为适应度函数。通过UCI 标准数据集实验证明, CABC 具有较强的局部和全局搜索能力, 其优化的支持向量机可在很大程度上克服局部极值点, 从而获取更高的分类准确率, 并有效缩短了搜索时间。将该方法应用于实际齿轮故障诊断中, 采用小波相对能量作为特征输入支持向量机, 分类准确率达到99. 4%, 验证了该方法的可行性和有效性。

关 键 词:支持向量机  混沌人工蜂群算法  参数优化  齿轮故障诊断  

SVM Optimization Based on Chaotic Artificial Colony Algorithm Gear Fault Diagnosis
LIU Xia,ZHANG Shanshan,HU Mingjian. SVM Optimization Based on Chaotic Artificial Colony Algorithm Gear Fault Diagnosis[J]. Journal of Jilin University:Information Sci Ed, 2015, 33(4): 476-484. DOI: 10.3969/j.issn.1671-5896.2015.04.020
Authors:LIU Xia  ZHANG Shanshan  HU Mingjian
Affiliation:1. Electrical Information Engineering Institute, Northeast Petroleum University, Daqing 163318, China;2. Instrument and Signal Institute, Xinjiang Design Institute, China Petroleum Engineering (Company Limited), Karamay 834000, China
Abstract:
In order to overcome the adverse effects on the performance of classification of SVM(Support Vector Machine) model parameters in the random selection, based on chaotic CABC-SVM ( Artificial Bee Colony Algorithm of Support Vector Machine) parameters optimization method is proposed. CABC algorithm uses the Logistic chaotic mapping initialization population and tournament selection strategy, further improves the artificial bee colony algorithm convergence speed and optimization precision, the classification accuracy as the fitness function when using the algorithm of penalty factor and kernel function parameters of SVM was optimized. UCI standard data sets experiments show that CABC algorithm has strong local and global search ability, the optimization of SVM can largely overcome local extremum points to obtain a higher classification accuracy, and can effectively shorten the search time. The method was applied to actual gear fault diagnosis, energy wavelet was used as the feature input SVM, classification accuracy rate reached 99. 4%, verified the feasibility and effectiveness of the improved method in this paper.
Keywords:support vector machine (SVM)  chaotic artificial bee colony (CABC) algorithm  parameter optimization  gear fault diagnosis
本文献已被 万方数据 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号