首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coupling mechanism of multi-force interactions in the myosin molecular motor
Authors:Zhao Guo  YueHong Yin
Institution:State Key Laboratory of Mechanism System and Vibration, Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:The dynamics of the myosin molecular motor as it binds to actin filaments during muscle contraction are still not clearly understood. In this paper, we focus on the coupling mechanism of multi-force interactions in the myosin molecule during its interaction with actin. These forces include the electrostatic force, the van der Waals force and the Casimir force in molecular dynamic simulations of the molecules in solvent with thermal fluctuations. Based on the Hamaker approach, van der Waals and Casimir potentials and forces are calculated between myosin and actin. We have developed a Monte Carlo method to simulate the dynamic activity of the molecular motor. We have shown that because of the retardation effect, the van der Waals force falls into the Casimir force when the distance between the surfaces is larger than 3 nm. When the distance is smaller than 3 nm, the electrostatic force and the van der Waals force increase until the myosin becomes attached to the actin. Over the distances studied in the present work, the electrostatic force dominates the attractive interactions. Our calculations are in good agreement with recently reported experimental results.
Keywords:molecular motor  myosin II  actin filaments  van der Waals force  Casimir force  Monte Carlo simulation
本文献已被 SpringerLink 等数据库收录!
点击此处可从《中国科学通报(英文版)》浏览原始摘要信息
点击此处可从《中国科学通报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号