首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机在导弹动力系统推力预测中的应用
引用本文:李仁兵,李艾华,李亮,王涛. 支持向量机在导弹动力系统推力预测中的应用[J]. 系统仿真学报, 2010, 22(4)
作者姓名:李仁兵  李艾华  李亮  王涛
作者单位:1. 第二炮兵工程学院502教研室,西安,710025
2. 海军航空工程学院702教研室,烟台,264001
摘    要:
应用改进型支持向量回归算法ν-SVR,研究了导弹动力系统推力预测问题,讨论了不同核函数和惩罚因子对推力预测的影响。发现选用多层感知器核函数和适当的惩罚因子时,得到的预测模型稳定性好,并且训练时间和预测误差相对较小;同时与BP神经网络模型进行了对比研究,仿真结果表明,支持向量机能够更好地预测发动机推力,是一种研究小样本情况下推力预测的有效方法。

关 键 词:支持向量机  推力预测  导弹动力系统  仿真  

Thrust Prediction of Missile Power System Based on SVM
LI Ren-bing,LI Ai-hua,LI Liang,WANG Tao. Thrust Prediction of Missile Power System Based on SVM[J]. Journal of System Simulation, 2010, 22(4)
Authors:LI Ren-bing  LI Ai-hua  LI Liang  WANG Tao
Abstract:
Thrust prediction of missile power system was studied based on v-SVR, which is the improved regression algorithm of support vector machine (SVM), and the influence of different kernels and different penalty coefficients on the thrust prediction was also discussed. Experimental results show that the prediction model has good stability and relatively small training time and predictive error when multi-layer perceptron kernel and proper penalty coefficient are chosen. Comparison experiments between v-SVR and BP neural networks demonstrate that support vector machine can predict thrust better, and it is an effective approach on studying thrust prediction under small samples.
Keywords:support vector machines  thrust prediction  missile power system  simulation  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号