首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于椭圆曲线的多密钥共享方案
引用本文:殷新春,汪彩梅. 一种基于椭圆曲线的多密钥共享方案[J]. 合肥工业大学学报(自然科学版), 2006, 29(4): 392-394
作者姓名:殷新春  汪彩梅
作者单位:扬州大学,计算机科学与工程系,江苏,扬州,225009
摘    要:文章利用拉格朗日插值的思想,提出了一种基于椭圆曲线的可防欺诈的动态多密钥共享方案;方案中每个参与者的子密钥可以不受限制的重复使用,因此在更新主密钥的时候,无需更改参与者的子密钥,从而减少了可信中心与参与者之间的通信量;方案可灵活地增删参与者,且安全性是基于椭圆曲线离散对数问题的难解性,因而其安全性比在有限域上更高;方案实现过程中解决了检验子密钥真伪的问题。

关 键 词:拉格朗日插值公式  椭圆曲线  主密钥  子密钥  椭圆曲线离散对数问题
文章编号:1003-5060(2006)04-0392-03
修稿时间:2005-05-12

A multi-key sharing scheme based on the elliptic curve
YIN Xin-chun,WANG Cai-mei. A multi-key sharing scheme based on the elliptic curve[J]. Journal of Hefei University of Technology(Natural Science), 2006, 29(4): 392-394
Authors:YIN Xin-chun  WANG Cai-mei
Abstract:Based on the elliptic curve cryptosystem,a multikey sharing scheme in which the Lagrange interpolation polynomial is used and the cheaters can be detected is presented.The sub-keys of participants can be used many times without restriction,and the master key can be renewed without renewing the sub-keys of the participants,reducing the costs of communication between the security center and the participants.The system can accept a new participant or fire a participant freely.The security of the scheme is based on the disperse logarithm of the elliptic curve,so the scheme can improve the security of the keys greatly.The scheme can also check the validity of the sub-keys.
Keywords:Lagrange interpolation formula  elliptic curve  master key  sub-key  elliptic curve discrete logarithm problem(ECDLP)
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号