首页 | 本学科首页   官方微博 | 高级检索  
     


SST data assimilation experiments using an adaptive variational method
Authors:Jiang?Zhu  mailto:jzhu@mail.iap.ac.cn"   title="  jzhu@mail.iap.ac.cn"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Hui?Wang,Guangqing?Zhou
Affiliation:(1) ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing, China;(2) National Natural Science Foundation of China, 100083 Beijing, China
Abstract:
An adaptive variational data assimilation method is proposed by Zhu and Kamachi[1]. This method can adaptively adjust the model state without knowing explicitly the model error covariance matrix. The method enables very flexible ways to form some reduced order problems. A proper reduced order problem not only reduces computational burden but also leads to corrections that are more consistent with the model dynamics that trends to produce better forecast. These features make the adaptive variational method a good candidate for SST data assimilation because the model error of an ocean model is usually difficult to estimate. We applied this method to an SST data assimilation problem using the LOTUS data sets and an ocean mixed layer model (Mellor-Yamada level 2.5). Results of assimilation experiments showed good skill of improvement subsurface temperatures by assimilating surface observation alone.
Keywords:data assimilation  adaptive variational method  sea surface temperature  oceanic mixed layer
本文献已被 万方数据 SpringerLink 等数据库收录!
点击此处可从《科学通报(英文版)》浏览原始摘要信息
点击此处可从《科学通报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号