首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system
Authors:F. D. Araruna  P. Braz E Silva  E. Zuazua
Affiliation:F.D.ARARUNA Departamento de Matematica Universidade Federal da Paraiba,58051-900,Joao Pessoa,PB,Brasil. P.BRAZ E SILVA Departamento de Matematica,Universidade Federal de Pemambuco,50740-540,Recife,PE,Brasil. E.ZUAZUA Ikerbasque Research Professor,Basque Center for Applied Mathematics (BCAM),Bizkaia Technology Park,Building 500,E-48160,Derio,Basque Country,Spain.
Abstract:
This paper shows how the so called von Kármán model can be obtained as a singular limit of a modified Mindlin-Timoshenko system when the modulus of elasticity in shear k tends to infinity, provided a regularizing term through a fourth order dispersive operator is added. Introducing damping mechanisms, the authors also show that the energy of solutions for this modified Mindlin-Timoshenko system decays exponentially, uniformly with respect to the parameter k. As k → ∞, the authors obtain the damped von Kármán model with associated energy exponentially decaying to zero as well.
Keywords:Mindlin-Timoshenko system  singular limit  uniform stabilization  vibrating beams  von Karman system  
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号