首页 | 本学科首页   官方微博 | 高级检索  
     

基于Q-学习的动态单机调度
引用本文:王世进,孙晟,周炳海,奚立峰. 基于Q-学习的动态单机调度[J]. 上海交通大学学报, 2007, 41(8): 1227-1232,1243
作者姓名:王世进  孙晟  周炳海  奚立峰
作者单位:上海交通大学,机械与动力工程学院,上海,200240;上海交通大学,机械与动力工程学院,上海,200240;上海交通大学,机械与动力工程学院,上海,200240;上海交通大学,机械与动力工程学院,上海,200240
基金项目:国家自然科学基金;教育部跨世纪优秀人才培养计划
摘    要:针对当前基于Q-学习的Agent生产调度优化研究甚少的现状,利用Q-学习对动态单机调度问题在3种不同系统目标下的调度规则动态选择问题进行了研究.在建立Q-学习与动态单机调度问题映射机制的基础上,通过MATLAB实验仿真,对算法性能进行了评价.仿真结果表明,对于不同的系统调度目标,Q-学习能提高Agent的适应能力,达到单一调度规则无法达到的性能,适合基于Agent的动态生产调度环境.

关 键 词:Q-学习  强化学习  动态单机调度  调度规则选择
文章编号:1006-2467(2007)08-1227-06
修稿时间:2006-10-14

Q-Learning Based Dynamic Single Machine Scheduling
WANG Shi-jin,SUN Sheng,ZHOU Bing-hai,XI Li-feng. Q-Learning Based Dynamic Single Machine Scheduling[J]. Journal of Shanghai Jiaotong University, 2007, 41(8): 1227-1232,1243
Authors:WANG Shi-jin  SUN Sheng  ZHOU Bing-hai  XI Li-feng
Affiliation:School of Mechanical Eng., Shanghai Jiaotong Univ., Shanghai 200240, China
Abstract:Q-learning was applied to a dynamic single-machine scheduling problem. Corresponding to the environment status change and three predefined system performance measurement, the machine agent that is embedded with Q-learning can select an appropriate dispatching rule dynamically. Based on the model between Q-learning and the dynamic single-machine scheduling problem, the performance of Q-learning was evaluated through simulations in MATLABa environment. The simulation results demonstrate that Q-learning can perform well for different system objectives, which is impossible for single dispatching rule. Therefore, Q-learning is promising for application to the agent-based dynamic production scheduling.
Keywords:Q-learning  reinforcement learning  dynamic single machine scheduling  dispatching rules(selection)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号