首页 | 本学科首页   官方微博 | 高级检索  
     

融合深度特征和FHOG特征的尺度自适应相关滤波跟踪算法
作者姓名:孙博  王阿川
作者单位:东北林业大学信息与计算机工程学院,黑龙江哈尔滨 150040
基金项目:黑龙江省自然科学基金(C201414)
摘    要:为了解决核相关滤波跟踪算法在复杂场景下跟踪效果差的问题,提出了一种融合深度特征和尺度自适应的相关滤波目标跟踪算法。首先,通过深度残差网络(ResNet)提取图像中被跟踪区域的深度特征,再提取目标区域方向梯度直方图(FHOG)特征,通过核相关滤波器学习,分别得到多个响应图,并对响应图进行加权融合,得到跟踪目标位置。其次,通过方向梯度直方图(FHOG)特征,训练一个PCA降维的尺度滤波器,实现对目标尺度的估计,使算法对目标尺度发生变化有很好的自适应能力。最后,根据响应图的峰值波动情况改进模型更新策略,引入重新检测机制,降低模型发生漂移概率,提高算法抗遮挡能力,在标准数据集OTB100中与其他7种目标跟踪算法进行比较。结果表明,相比原始KCF算法,改进后的KCF算法精准度提升了29.4%,成功率提升了25.9%。所提算法实现了对跟踪目标位置的精准估计,提高了尺度自适应能力和算法速度,增强了算法抗遮挡能力。[JP]

关 键 词:计算机图像处理  目标跟踪  核相关滤波  深度特征  多尺度  抗遮挡
收稿时间:2021-09-10
修稿时间:2021-11-19
本文献已被 万方数据 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号