首页 | 本学科首页   官方微博 | 高级检索  
     

基于分解集成方法的空中交通流量短期预测
引用本文:王飞,孙鹏飞. 基于分解集成方法的空中交通流量短期预测[J]. 科学技术与工程, 2021, 21(35): 15270-15276
作者姓名:王飞  孙鹏飞
作者单位:中国民航大学空中交通管理学院, 天津300300
基金项目:国家自然科学基金青年科学基金(71801215);中央高校基本科研业务费专项资金(3122019129)
摘    要:为对空中交通流量进行短期预测,提出了基于分解集成方法的组合预测模型。首先,应用EEMD方法将流量时序数据分解为若干个分量;其次,应用排列熵计算各分量的复杂度,复杂度高于0.5的归为高频分量,其余归为低频分量;然后,高频分量采用BP神经网络算法进行预测,低频分量采用最小二乘法进行预测;接着,对分量的预测结果进行加和集成,得到了最终的预测值。最后,采集实际运行数据进行算例分析。通过比较1~6 h和7~12 h的预测结果,本文模型在1~6 h的EC值为0.905,准确度更高。与EMD-BP-OLS模型、BP模型进行比较,本文模型的评价指标均优于其他模型。通过比较60 min,30 min,15 min时间尺度数据的预测结果,60 min时间尺度的EC值为0.924,准确度最高。结果表明,本文提出的模型是可行的和有效的,更适用于短期流量预测。

关 键 词:航空运输  流量短期预测  分解集成方法  集合经验模态分解  BP神经网络
收稿时间:2021-04-10
修稿时间:2021-09-29

Short Term Forecasting of Air Traffic Flow Based on Decomposition and Integration Method
Wang Fei,Sun Pengfei. Short Term Forecasting of Air Traffic Flow Based on Decomposition and Integration Method[J]. Science Technology and Engineering, 2021, 21(35): 15270-15276
Authors:Wang Fei  Sun Pengfei
Abstract:In order to forecast air traffic flow in short term, a combined forecasting model based on decomposition and integration method is proposed. Firstly, the EEMD method is used to decompose the traffic time series data into several components; secondly, the permutation entropy is used to calculate the complexity of each component. The high-frequency component is classified as high-frequency component and the rest is classified as low-frequency component; then, BP neural network algorithm is used to predict the high-frequency component, and the least square method is used to predict the low-frequency component; then, the prediction results of the components are added Finally, the final prediction value is obtained. Finally, the actual operation data are collected for example analysis. By comparing the prediction results of 0 ~ 6 h and 6 ~ 12 h, the EC Value of the model in 0 ~ 6 h is 0.905, and the accuracy is higher. Compared with EMD-BP-OLS model and BP model, the evaluation index of this model is better than other models. By comparing the prediction results of 60 min, 30 min and 15 min time scale data, the EC Value of 60 min time scale is 0.924, with the highest accuracy. The results show that the model proposed in this paper is feasible and effective, and more suitable for short-term flow forecasting.
Keywords:air transport   short term traffic forecast   decomposition integration method   ensemble empirical mode decomposition   BP neural network
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号