首页 | 本学科首页   官方微博 | 高级检索  
     

改进的智能机器人语音识别方法
引用本文:张毅,李艳花,刘全杰,杨红梅,曾莉. 改进的智能机器人语音识别方法[J]. 重庆邮电大学学报(自然科学版), 2009, 21(6): 799-805
作者姓名:张毅  李艳花  刘全杰  杨红梅  曾莉
作者单位:重庆邮电大学,智能系统及机器人研究所,重庆,400065
摘    要:
作为一种人机信息交互技术,语音识别技术得到了广泛的应用.介绍了基于凌阳十六位单片机SPCE061A的语音识别系统.并且采用了以传统的线性预测倒谱系数(LPCC)与分形维教相结合的混合参数作为特征参数的语音识别方法.LPCC方法是体现说话人特定的声道共振特性的线性预测方法,而分形维数则可以定量的描述语音气流中的非线性混沌特征.实验结果表明,基于LPCC与分形维数混合参数的语音识别方法要比单一的LPCC参数语音识别方法识别效果好.

关 键 词:语音识别  分形维数  智能机器人
收稿时间:2009-04-17

Improved speech recognition method for intelligent robot
ZHANG Yi,LI Yan-hu,LIU Quan-jie,YANG Hong-mei,ZENG Li. Improved speech recognition method for intelligent robot[J]. Journal of Chongqing University of Posts and Telecommunications, 2009, 21(6): 799-805
Authors:ZHANG Yi  LI Yan-hu  LIU Quan-jie  YANG Hong-mei  ZENG Li
Affiliation:Research Center of Intelligent System and Robotics Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
Abstract:
As a communication technology between man machine interactive technology, speech recognition is widely used. In this paper, we introduces the speech recognition system based on the 16 bit SPCE061A serial single chip and propose a speech recognition approach with mixed parameter, which combines the traditional Linear Predictive Cepstral Coefficients (LPCC) and fractal feature as the feature parameter. The LPCC method is linear procedure based on the assumption that speaker features have properties caused by the vocal tract resonances. Fractal dimension is used to quantitatively describe the chaos nonlinearity in speech air flow. The experimental results show that mixed feature parameter of LPCC and fractal dimension is better than single LPCC feature parameter in recognition rate.
Keywords:LPCC  speech recognition  LPCC  fractal dimension  intelligent robot
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号