首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
因子von Neumann代数上的非线性斜Jordan三重可导映射
作者姓名:
宁彤
张建华
作者单位:
陕西师范大学 数学与信息科学学院, 西安 710119
摘 要:
设A是Hilbert空间H上维数大于1的因子von Neumann代数. 利用代数分解的方法证明: 如果非线性映射: A →A满足对任意的[JP2]A,B,C∈A, 有(A·B·C)=(A)·B·C+[JP]A·(B)·C+A·B·(C), 则是可加的*-导子.
关 键 词:
因子von Neumann代数
非线性斜Jordan三重可导映射
*-导子
收稿时间:
2019-06-03
本文献已被
CNKI
万方数据
等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号