首页 | 本学科首页   官方微博 | 高级检索  
     

几个初等几何命题的高等几何背景追踪
引用本文:杨俊林. 几个初等几何命题的高等几何背景追踪[J]. 阜阳师范学院学报(自然科学版), 2009, 26(3): 83-88
作者姓名:杨俊林
作者单位:泰州师范高等专科学校数理科学系,江苏泰州,225300
摘    要:高等几何与初等几何之间有着十分密切的关系.在高等几何背景下(如完全四点形定理,共线四点的调和共轭,仿射不变量、配极原则、Brianchon定理、二阶曲线的射影理论等)可以编制出很多初等平面几何题.研究这个问题可以提高我们在高等几何观念下审视初等几何问题的能力.

关 键 词:高等几何  初等几何  调和共轭  射影

An exploration of several propositions of elementary geometry in the context of higher geometry
YANG Jun-lin. An exploration of several propositions of elementary geometry in the context of higher geometry[J]. Journal of Fuyang Teachers College:Natural Science, 2009, 26(3): 83-88
Authors:YANG Jun-lin
Affiliation:YANG Jun-lin (Department of Mathematical Science, Taizhou Teachers College, Taizhou, Jiangsu 225300, China)
Abstract:Higher geometry and elementary geometry have enjoyed a very close relationship.In the context of higher geometry(such as the full four-point type theorem,the harmonic conjugation of a four-point collinear,affine invariant,with-great principle,Brianchon theorem,the projective theory of second-order curve,etc.) a lot of elementary plane geometry questions are able to be prepared.The exploration into this issue could improve the ability of examining the elementary geometry problems under the high-concept.
Keywords:higher geometry  elementary geometry  harmonic conjugation  projection
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号