首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的录音地点识别方法
引用本文:王学强,吉建梅,包永强. 基于BP神经网络的录音地点识别方法[J]. 南京工程学院学报(自然科学版), 2014, 0(3): 19-24
作者姓名:王学强  吉建梅  包永强
作者单位:南京工程学院通信工程学院,江苏南京,211167
基金项目:国家自然科学基金(51075068);江苏省大学生实践创新训练项目
摘    要:现有的数字音频取证技术很难做到录音地点的识别,因此司法机关就不易对音频证据的有效性做出判断.针对现状,本文设计了一种基于BP神经网络的录音地点识别方法.该方法是将电网频率(ENF)作为识别根据.进行地点识别操作时,首先将电网ENF作为训练样本训练BP神经网络,然后从待取证的音频文件中提取电网频率数据并作为输入样本,用训练好的BP神经网络对输入样本进行识别,最后用模拟退火算法从识别结果中搜索出最佳识别结果,从而识别出录音的地点.实验结果表明,该方法的识别准确率最低达到90.6%,可靠性满足一定的要求.

关 键 词:音频取证  BP神经网络  电网频率  地点识别

An Approach to Identifying Rceording Locations Based on BP Neural Networks
WANG Xue-qiang,JI Jian-mei,BAO Yong-qiang. An Approach to Identifying Rceording Locations Based on BP Neural Networks[J]. Journal of Nanjing Institute of Technology :Natural Science Edition, 2014, 0(3): 19-24
Authors:WANG Xue-qiang  JI Jian-mei  BAO Yong-qiang
Affiliation:(School of Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
Abstract:The existing digital audio forensics technology has difficulty in identifying the location,where the recordings are made,making it hard for judicial organs to assess the effectiveness of the audio evidence.To address such an issue,this paper devises a method for identifying such locations using a grid ENF based on BP neural network. In the identification process ,grid ENF is used as a training sample for purpose of training BP neural network.Next,the grid frequency data are extracted from audio files as input samples,which are then identified by using the trained BP neural network.Finally,to identify the location of the recording,optimal recognition results are obtained from the recognition results by adopting a simulated annealing algorithm.The experimental results show that recognition rate of this approach is at least 90.6 %,and the approach is reasonably reliable.
Keywords:audio forensics  BP neural network  ENF  location identification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号